182 research outputs found

    Spin-Spin Asymmetries in Large Transverse Momentum Higgs Boson Production

    Full text link
    We examine the spin-dependence of standard model Higgs boson production at large transverse momentum via the processes gggH0gg \rightarrow gH^0, qgqH0qg \rightarrow qH^0, and qqgH0q\overline{q} \rightarrow gH^0. The partonic level spin-spin asymmetries (a^LL\hat{a}_{LL}) for these processes are large at SSC/LHC energies.Comment: 10 pages, 4 figures (not included), LaTeX; PSU/TH/113, MAD/PH/70

    Reduced elastogenesis: a clue to the arteriosclerosis and emphysematous changes in Schimke immuno-osseous dysplasia?

    Get PDF
    BACKGROUND: Arteriosclerosis and emphysema develop in individuals with Schimke immuno-osseous dysplasia (SIOD), a multisystem disorder caused by biallelic mutations in SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1). However, the mechanism by which the vascular and pulmonary disease arises in SIOD remains unknown. METHODS: We reviewed the records of 65 patients with SMARCAL1 mutations. Molecular and immunohistochemical analyses were conducted on autopsy tissue from 4 SIOD patients. RESULTS: Thirty-two of 63 patients had signs of arteriosclerosis and 3 of 51 had signs of emphysema. The arteriosclerosis was characterized by intimal and medial hyperplasia, smooth muscle cell hyperplasia and fragmented and disorganized elastin fibers, and the pulmonary disease was characterized by panlobular enlargement of air spaces. Consistent with a cell autonomous disorder, SMARCAL1 was expressed in arterial and lung tissue, and both the aorta and lung of SIOD patients had reduced expression of elastin and alterations in the expression of regulators of elastin gene expression. CONCLUSIONS: This first comprehensive study of the vascular and pulmonary complications of SIOD shows that these commonly cause morbidity and mortality and might arise from impaired elastogenesis. Additionally, the effect of SMARCAL1 deficiency on elastin expression provides a model for understanding other features of SIOD

    The permanently chaperone-active small heat shock protein Hsp17 from Caenorhabditis elegans exhibits topological separation of its N-terminal regions

    Get PDF
    Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps

    Expression signatures of TP53 mutations in serous ovarian cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the <it>TP53 </it>gene are extremely common and occur very early in the progression of serous ovarian cancers. Gene expression patterns that relate to mutational status may provide insight into the etiology and biology of the disease.</p> <p>Methods</p> <p>The <it>TP53 </it>coding region was sequenced in 89 frozen serous ovarian cancers, 40 early stage (I/II) and 49 advanced stage (III/IV). Affymetrix U133A expression data was used to define gene expression patterns by mutation, type of mutation, and cancer stage.</p> <p>Results</p> <p>Missense or chain terminating (null) mutations in <it>TP53 </it>were found in 59/89 (66%) ovarian cancers. Early stage cancers had a significantly higher rate of null mutations than late stage disease (38% vs. 8%, p < 0.03). In advanced stage cases, mutations were more prevalent in short term survivors than long term survivors (81% vs. 30%, p = 0.0004). Gene expression patterns had a robust ability to predict <it>TP53 </it>status within training data. By using early versus late stage disease for out of sample predictions, the signature derived from early stage cancers could accurately (86%) predict mutation status of late stage cancers.</p> <p>Conclusions</p> <p>This represents the first attempt to define a genomic signature of <it>TP53 </it>mutation in ovarian cancer. Patterns of gene expression characteristic of <it>TP53 </it>mutation could be discerned and included several genes that are known p53 targets or have been described in the context of expression signatures of <it>TP53 </it>mutation in breast cancer.</p

    Serum proteome analysis for profiling protein markers associated with carcinogenesis and lymph node metastasis in nasopharyngeal carcinoma

    Get PDF
    Nasopharyngeal carcinoma (NPC), one of the most common cancers in population with Chinese or Asian progeny, poses a serious health problem for southern China. It is unfortunate that most NPC victims have had lymph node metastasis (LNM) when first diagnosed. We believe that the 2D based serum proteome analysis can be useful in discovering new biomarkers that may aid in the diagnosis and therapy of NPC patients. To filter the tumor specific antigen markers of NPC, sera from 42 healthy volunteers, 27 non-LNM NPC patients and 37 LNM NPC patients were selected for screening study using 2D combined with MS. Pretreatment strategy, including sonication, albumin and immunoglobulin G (IgG) depletion, was adopted for screening differentially expressed proteins of low abundance in serum. By 2D image analysis and MALDI-TOF-MS identification, twenty-three protein spots were differentially expressed. Three of them were further validated in the sera using enzyme-linked immunosorbent assay (ELISA). Our research demonstrates that HSP70, sICAM-1 and SAA, confirmed with ELISA at sera and immunohistochemistry, are potential NPC metastasis-specific serum biomarkers which may be of great underlying significance in clinical detection and management of NPC
    corecore